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Droplet vaporization at critical conditions: Long-time convective-diffusive profiles
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The heating of a cold fluid package introduced, at critical conditions, in a hotter environment of the same
fluid at the critical pressure is analyzed. Critical anomalies of the fluid transport properties as well as an
arbitrary equation of state are taken into account. In unconfined microgravity conditions and for times much
longer than the characteristic acoustic time, the heat transfer becomes a convective-diffusive isobaric transient
process. An asymptotic theory valid in the limit of very small ratio between the fluid densities in the hot and
cold regions is developed. The divergency of the thermal conductvitythe critical temperature controls the
heat transfer to the cold region. In the present model it is shown that there exists a well defined border, denoted
by R(t), delimiting two distinguishable regions. The outer region extends from the far field dowR(tjo
where the critical temperatufi, is reached. There, the temperature gradient vanishes due to the divergency of
k. Thus, heat does not penetrate in the inner cold region where the temperature remains ggualtie
heating of the initially cold fluid package takes place by the recession of the R¢tlerThe model predicts
a temperature profile in the outer region which is quasisteady in a reference system recediR(twithis
shown thatR?(t) decreases linearly with time. The recession velocity and thus the vaporization time are
obtained as a function of the geometry and of the far-field conditions. Furthermore, the restrictions imposed by
the long-time isobaric hypothesis are analyZ&il063-651X99)01009-0

PACS numbgs): 44.10:+i, 44.25+f, 64.60.Ht

[. INTRODUCTION sure will remain almost constant and equal to the initial criti-

cal pressureP.. Under these conditions, the temperature
The heating of an initially cold package of fluid at the may attain a quasistationary profile that recedes with a given
critical point (CP) suddenly introduced in a much larger and velocity. This velocity has to be obtained as part of the so-
hotter environment of the same fluid at critical pressure idution. In the present paper, the long-time isobaric evolution
analyzed. Buoyancy effects are not considered. Classic&f the initial temperature discontinuity is outlined for various
theories for droplet vaporization under subcritical conditionsgeometries, and fully solved for the spherical symmetry case
predict that the square of the droplet diameter decreases lifthich is the case of interest in droplet vaporization. It is
early with time (the so-calledd? law). The proportionality shown that, due to the critical divergency of the thermal

constant provides the vaporization rate which depends on t ”dUCti_VityK , the slop_e of the quasist_eady temperature pro-
e, attained for long times, must vanish at the locus where

fluid thermodynamic properties and diverges when the Iaten% tical t urd | hed. This behavior of th
heat of vaporization vanishes. Therefore, a vanishing vapor- € critical temperature ¢ 1S reached. This benhavior ot the

ization time is predicted for critical fluid conditions. Thus, temperature profile matches continuously with the theoreti-

. ) cFlIIy predicted isobaric QS profiles found in the subcritical
these classical theories do not properly account for the actu%ase’ when the pressure is raised up to the critical value and

behavior. _at and.near the qujd critical pressure. The hgatin%e vaporization latent heat vanishes.
of the critical fluid package is analyzed in this paper with @ e following temperature discontinuity is considered as
full account of the critical behavior of the thermodynamic jniial condition:
fluid properties at the critical point. In this work, the usual
quasisteadyQS) approach(in a moving reference system
for the temperature distribution in the hot fluid region is
used. The model leads again toda law but now with a
nondiverging vaporization rate. wherer is the relevant spatial coordinate aRdtands for the

Let us consider the unsteady convection-diffusion heatocation of the border separating the cold fluid at the CP
transfer problem of two adjacent portions of the same fluid afrom the heated fluid. The subscripstands for critical con-
different initial temperatures, such that the cold fluid portionditions, the subscrip refers to the initial conditions in the
is at the vapor-liquid CP. An enhanced heating occurs due thot region, and subscript “in” denotes initial values.
the piston effect if the heat transfer takes place at constant The pressure is considered to remain equal to the critical
volume, as a consequence of the critical divergency of thgressureP=P_.. Then, the velocity field and temperature
thermal expansion coefficient. However, we will restrict our-distribution are governed by the continuity equation and the
selves to the case of an unconfined environment when thenergy equation. The moment conservation equation can be
characteristic heating time is much longer than the acoustiased to determine the validity limits of the isobaric hypoth-
time, as happens in many practical situations. Here, the presgsis.

T=T.forr<R,, and T=T,, forr>R;,, @
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This paper is organized as follows. A brief review of (cpNTo—Tin)
present droplet vaporization theories in subcritical as well as Kyap=In| 1+ B E— (4)
supercritical fluid conditions is outlined in Sec. Il. As the
classical analyses fail down near the fluid critical conditions
a new model is presented in this paper. For critical condi
tions, the position wher@ reaches the critical valug, from

where(cp) is an averaged value of the specific heat at con-
'stant pressuréand this average behaves regularly at the criti-

the hotter side defi h teristic | hich ol thcal poiny andL is the specific latent heat of vaporization
€ hotter side denineés a characteristic locus which piays GNhich vanishes when the critical temperature is ap-
role of the gas-liquid interface in subcritical conditions. Theproacheai

properties of this locus are presented in_ Sec. lll. The quasi- Therefore, Eq(4) shows that the classical theory predicts
steady temperature profiles are solved in Sec. IV where thg divergency of the vaporization rate, as the pressure ap-

d? law and the critical vaporization rate are obtained. Also in roaches the fluid critical pressure whéreanishes. Thus, a
Sec. IV the restrictions imposed by the model are disCusse iy ¢ critical pressure seems to vaporize instantaneously
Section V applies the results to a van der Waals fluid ayy, o (5 the vanishing df. That would mean that as soon as a
critical conditions. The discussion of results is provided i”pocket of cold fluid is introduced in a much hotter environ-
Sec. Vl. ment filled with the same fluid at the critical pressure, there
is no distinction between the two initial regions and a con-
Il. DROPLET VAPORIZATION THEORIES tinuous phase represents the evolution of the heat transfer
o . problem. However, experimenis¥—-11] have shown that
The problem of droplet vaporization/combustion in un-eyen for ambient pressures equal to the fluid critical pressure
confined media is usually treated as isobarie., the veloc- o |5rger, there still exists a characteristic time of heat con-
ity induced by the Stefan flow assumed to be much smallegy,ction. During this time a well defined cold region remains
than the sound spegdspherically symmetricalneglecting jstinguishable from the heated fluid side. This behavior can-
buoyancy effects and diffusion controlled. Sef—5] fora ot he obtained from the classical theory. The present paper

review. B _ _ tries to solve the discrepancy between the classical theory
In subcritical conditions the classical theory predicts thaty 4 the experimental findings.

there exists an ipitial transient period for the whole droplet to Spalding[12], in order to compute droplet combustion
reach the vaporization wet-bulb temperature. The amount Qfes  considered that under critical or supercritical condi-
fluid vaporized during this transient phase is often negligiblej s the droplet could be considered as an instantaneous
Afterwards the vaporization proceeds in a QS manner suc,int source(PS of gas(PS theory. In this PS theory the
that the squared diameter of the droplet decreases linear, ensity is taken as constant in the gas phase and, conse-
with time (d” law). Then, the vaporization rate defined as quently, convective transport is neglected, but unsteady con-
duction of heat is taken into account. Rosn&8| general-

;o dR? _ Rﬁ ized the former PS theory to account for the finite size of the
Kvap=~ T fap 2 supercritical pocket of gas. Like the PS theory, the distrib-
uted source theory neglected the convective heat transfer in
the gas surrounding the droplet. ri8aez-Tarifaet al. [14]

is constantt,,, is the characteristic droplet vaporization time 2 0= . .
andR is the instantaneous droplet radius. analyzed the vaporization time of a supercritical droplet in a

Depending on the initial droplet temperature, the transien @S pha_sg considered as an i‘?'?a' gas with v_ariable thermal
heating period in the liquid phase may last for an appreciabIEO”d“Ct'V'ty a_mld constant spem_ﬁc_heat. Ir_1 their analysis the
fraction of the droplet lifetime. The transient period in the SPace was divided into three distinct regions, the outer QS

gas phase close to the dropl@duced by the initial tem- region, the inner' receding transition region, and the colq
perature discontinuityhas been found to be negligible. The droplet. Each region was solved separately and the recession
validity of this QS theory is explained as a consequence ofate of the transition region was obtained by the matching

the very small density ratio between the gas density and thB€tween the temperature profiles in the different regions.
liquid density They also found a~“ law for the vaporization dynamics ap-

plicable when the heating takes place at supercritical pres-
sures. The present work is based on the analysis bgl&a-
SEP_’”<1 (3)  Tarifa etal. [14], but includes the critical behavior of the
Pin fluid transport coefficients at the critical temperature. In our
analysis, the transition region indicated bynShez-Tarifaet
that causes in the gas an intense Stefan flow and a very largé. becomes engulfed by the outer region and only two dis-
characteristic Strouhal number. The unsteady corrections ténguishable fluid regions should be accounted for.
the QS theory are, as explained [8], due to the influence The problem of droplet vaporization in contact with a
of the unsteady far-field region, at distances of ofdgr \, multicomponent gas has been studied by several authors.
where convection is negligible as compared to diffusion.Rosner and Chand15] considered the vaporization and
These unsteady corrections of the QS model are of ordexombustion problem of a monocomponent droplet in near
0O(&'?). critical conditions in contact with a multicomponent gas. In
In these subcritical conditions when variable propertiesheir model the properties in both phases, including the gas
are taken into account, tle¥ law and the vaporization con- density, were substituted by appropriate averaged values and
stant predicted by the classical theory are in good agreemettie actual behavior of the latent heat was taken into account.
with experimen{2], resulting in They obtained the stationary wet-bulb temperature for the
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liquid phase in contact with a multicomponent gas as a result TABLE I. Critical exponents and critical exponent combina-
of the balance between the heat transferred to the droplet dipns.

conduction and that needed for the vaporization to take
place. As the pressure is raised the stationary wet-bulb tenf=ritical exponent  Mean field theory ~ Renormalization group
perature tends to the critical value along the coexistence 0 0.11G-0.003

curve, reaching it when the pressure is about three times the “ 1/2 0,326+ 0.002
critical pressure of the fuel. For pressures larger than nearly A ' '

. . e . 1 1.239+0.002
three times the fuel critical pressure, a subcritical stationary Z; 3 4.80-0.02
temperature for the dense phase is never achieved. The i '
model concludes that in these cases the vaporization will be 12 0.630-0.001
completely unsteady. For smaller pressures the droplet will 7 0 0.031-0.004
attain a subcritical stationary wet-bulb temperature even with s 1/3 0.208-0.001
pressures greater than the critical pressure. Haldenwang ¥ 23 0.792-0.009
et al.[16] considered the problem of a liquid oxygen droplet Bé
vaporizing in contact with a hydrogen atmosphere. The ther- 13 0.403+0.012
modynamic model considered in the numerical analysis was 5o
based on a mixture equation of state obtained by means of
the classical mixing rules applied to the Redlich-Kwong- y—v 1/3 0.389-0.004
Soave cubic equation of statEOS of the pure component. BS
The classical mixing rules were also considered in orderto  ;_ ” 213 0.597-0.012
approximate the specific heat of the mixture. The transport B
properties considered were based in empirical correlations
supplemented with mixing rules in the case of the thermal T—T.\A
conductivity. In the thermodynamic model of the mixture the p—pcx( T along the coexistence line,
singular critical behavior of the pure component thermody- ¢
namic properties was not taken into account. The study fo- _ ®)
cused on the transition from subcritical to supercritical va- £ T atp=p.,
porization regime depending on ambient pressure and Te

temperature. The results of the analysis showed that, as a .

consequence of mixture properties, subcritical vaporizatiofvheres, 6, andv are critical exponents. _
regimes can be obtained even for chamber pressures much Moreover, the Einstein-Kawasaki formula9] provides
larger than the oxygen critical pressure. For larger chambéhe behavior of the thermal diffusivity near the CP,
pressures the transient supercritical vaporization regime is K

encountered. The minimum droplet vaporization time was X:Lz BT
found to correspond to the pressure and temperature condi- pCp bmué’

tions where the transition between both regimes occurred. ) o ] -
wherek is the thermal conductivitygp is the mass specific

heat at constant pressufg is the Boltzmann constant, and
Ill. THE FLUID AT CRITICAL CONDITIONS u is the (nondiverging fluid viscosity.
Making use of the exponent renormalization rule for the
ower laws along different path20], when one approaches
he critical temperature along the critical isobar, the order

the cooler and denseifiquid) phase from the hotter and arameter, the mass specific heat at constant pressure, and
lighter (gag phase. However, the concepts of latent heat an ' S SP P '
he thermal conductivity behave as

surface tension lose their meaning beyond the critical pres-

6

When the vaporization takes place under subcritical con-
ditions, there is a well defined physical interface separatin

sure where both vanish. Thus, for pressures larger than or —T\ e
equal to the fluid critical pressure such an interface cannot be pP—pe=— po( | atP=P,
properly defined. However, in the present section it is shown Te
that at the critical pressure, the locus where the critical tem- s
. . - T-T.| 78
perature is reache@nd where several fluid transport coeffi Co=C c atP=pP @)
cients divergg plays a role quite similar to the interface in POl T, e’

subcritical conditions.

K=pcXoCo at P=P,

T-T, —(y=v)IBs

A. The divergencies at critical pressure Te

The shape of the critical isotherm, the behavior of theywhere subscript 0 denotes the dimensional power law ampli-
order parametefthe fluid densityp), and the correlation tydes along the critical isobar.

length £, near the CP, are given by the well known critical  The values of the critical exponerj80] and all the criti-

laws 17,18 cal exponent combinations of interest here are given in Table
) I, where the first column corresponds to thean field theory
P x P~ Pec - and the second column to the most accurateormalization
P—-P, atT=T,,
Pc group value.
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) the CP the second term on the right-hand side of @j.
. 10 | dominates and the energy equation can be approximated by
IS 104 1
g /N
g w TN A o Yo ¥y [T T e T2
2 O el PRa I e —_ - —=—S - - T A4« - .
‘g 101 P eIy ST T s at v or grt C)TC B T, ar
g 10 (12)
‘: 109
£ 10 Therefore, in order to achieve a balance between convec-
g 102 tion and diffusion in Eqs(8), (12), as the temperature ap-
Ewsl proaches the critical value in the hot gaslike side, the spatial
A | m———— L e ———— . . . .
104 T~ | derivative of the temperature must vanish according to the
‘ | ower law
p
0.999 0.9995 1 1.0005 1.001
[C]
IT |[T—T[t7"k°
. . —— (13
FIG. 1. Log-linear plot ofA=«/«. (solid ling), C=cp/cp_ ar T,

(dotted ling, A/eC=x/x.. (dashed ling andA g=|dA/40| (dot- . .
dashed lingversus the reduced temperat@e=T/T, for avan der and consequently the heat flux must vanish following the
Waals fluid in the critical region witP=P,, T.=9.3T,, ¢,  Power law

=32R.,, and x given by Egs.(58 and (60)—(62) with «,

=0.014¢,. and k;=0.078,,. See Sec. V for a discussion of the al

K— X
values of these parameters. ar

1/6

T-T.
: (14)

Te

Then, as shown in Fig. 1, the specific heat at constanthere use has been made of Ef) together with Eq(13)
pressuresp and the thermal conductivity diverge when the and Rushbrooke’s and Griffith’s scaling laWs8] (see be-
critical temperature is approached along the critical isobarlow).

The divergence of; is stronger than the divergence of Then, as a consequence of the powerlike divergency of
the thermal conductivity with the temperature, when the va-
B. Behavior of the temperature gradient porization takes place along the critical isobar, the heat dif-

o ) ) fuses only down to a definite loci(t) defined as the place
The unidimensional energy equation at constant pressuighere

reduces to

oT
T=T, ande=O atR(t). (15

T T x o/ oT 1 9k (dT
—_—ty—=—— r9—| 4+ ——| —
ot ar  yeodr ar pCp dT \ ar

2

) . (8
On this locus the temperature reaches the critical value

wherer is the relevant spatial coordinate,is the fluid ve- and the thermal flow vanishes. Moreover, on the other side

locity component along, andg is a number which depends of this locus the temperature remains at the initial critical

on the geometry: temperature. The heating of the cold fluid takes plade(as

recedes. The receding velocity, obtained as part of the solu-

tion, determines the vaporization time. The vanishing of the

heat flux at a moving location is a well known behavior for a

thermal diffusivity with a powerlikgalthough not necessar-

ily diverging) temperature dependendsee, for instance,

planar symmetry: g=0,
cylindrical symmetry: g=1, (9)

spherical symmetry: g=2.

[21)]).
From Eq.(7), near the CP the dominant part of the de- Once this is stated, we define this lodrg) as the in_ter- _
rivative of the thermal conductivity is given by face between the heated and nonheated regions. This choice
appears to be the natural extension of the real thermody-
IK XoCo Y— ¥ T_Tc‘ —(y=»)/Bs-1 namic interface in subcritical conditions as the critical pres-
7= ST —Te)pe T. Bo| T. | . sure is attained. Consider that the experiment of isobaric va-

(10) porization is repeatedly performed with pressures
increasingly higher. As the critical pressure is reached, the
Therefore, for the coefficient of the last term on the right-heat flux at the interface, on the gas phase sid€T(dr)r_,

hand side of Eq(8), we find which is proportional to the latent heat times the vaporization

—(1-v1B5) rate, will decrease tending to zero, owed to the vanishing of

L a—K:—sgr(T—T )ﬁ rv T_TC‘ the latent heat at the CP. Then, the conditions stated by Eq.
pCp JT “T. BS | T, ' (15) are achieved in the limit of vaporization at the critical

(11)  pressure.
which corresponds to a quite strong divergent behavior. On ) . N
the other hand, from Ed6) the thermal diffusivity vanishes C. Extrapolation of the model to other dimensionalities

as ¢ 1. A comparison between these two coefficients is The vanishing heat flux @(t) is reached for any values
shown in Fig. 1, see also Fig. 3 discussed later. Then, neaif the critical exponents whenever two basic conditions are



2934 ARIAS-ZUGASTI, GARC]A-YBARRA, AND CASTILLO PRE 60

accomplished. First, a divergent behavior of the thermal conprocess a characteristic heat conduction length arises, given
ductivity with a critical exponent¢—v)/86>0 is needed. by
Second, a divergent behavior of pth)(dx/dT) with a

critical exponent +v/B86>0 is required. These two condi- Lo T (17)
tions may be summarized as HC™ oT/or
v<y and v<4B. (16)  and the process can be assumed to be governed by a macro-

_ o scopic model whenever
The exponent values and the space dimensionéiigye

denoted byD) are related by the scaling laW$8] E<lyc. (18)
2p+vy=2—a (Rushbrooke’s law In the relaxation process considered here the former con-
dition is expected to be accomplished far from the CP. More-
2B6—y=2—«a (Griffith’s law), over, as the critical point is approached along the critical

isobarL ¢ diverges proportionally to
v=v(2—7n) (Fisher'slaw,

Lyc (19

T_TC‘ —1+vIBé
vD=2—a (Josephson’s lay Te

The first condition in Eq(16) is accomplished as long as recalling the_ exponent renormali;ation rule for the power
n<1, which is largely fulfilled, whereas the second condi-!aws along different pathg20] we find
tion is always fulfilled forD>2, and for the exponent values

in Table | it will hold for D>1.208. Therefore, the condi- ix L atP=p (20)
tions indicated by Eq(16) are accomplished in any real ex- Luc T, e

periment of vaporization at the CP for all the symmetries

indicated in Eq.(9) whereD=3. where use has been made of Rushbrooke’s law, Griffith’s

law, and Josephson’s law. Then near the CP the former con-

D. The use of a mean field theory dition stated by Eq(18) is translated here to

In the previous description of the fluid, a mean field 2
theory has been assumed, neglecting the fluctuations in tem- o>——. (21
; . D-2
perature and density. As we know, these fluctuations become

very intense near the critical point. Therefore, one may won- . . L
- . : : From Table | it may be concluded that this condition is
der about the validity of this mean field hypothesis. The ulfilled for D=3 and it can never be fulfilled fab—2., .

mean field theory is accurate only away from the CP, Wher{rakin into account the exponent values in Table | the con-
the correlation length is a microscopic scale and the fluctua- 9 P

tions of the order parameter are negligible. As the criticaldition ¢<Lyc will hold for D>2.67 (for §=3) and forD

point is approached thermally induced fluctuations of the or- 242 (for 5=4.80). This provides a self-consistency test of

der parameter develop in many different scales rising to thg_‘e present SChe”.‘e f@ =3 but by no means claims _that
macroscopic scale. Then, the dynamics becomes govern jfctuations are u_nlmp_ortant. What happen_s is that the impor-
by the interactions between these clusters regardless of thdfince of f_IUCt“at'O”S IS restncteq toa ne|ghborhood of the
size and leading to the behavior predicted by the renormalgrltlcal point. And even though this Iength diverges the s_c_ale
ization group theory. The mean field theory neglects the on9f the region where the tempera_ture is close to the critical
set and interaction of these critical fluctuations and is thudemperature shows a stronger divergency and mean values
unable to accurately predict the critical exponents of stati¢an properly be used.

(thermodynamic potentiglsand dynamic(transport coeffi-

cient properties. Nevertheless, transport phenomena near IV. GOVERNING EQUATIONS

the CP are usually studied by solving hydrodynamic equa-
tions (as the equations considered hesapplemented with
the actual behavior of the transport properties involved. In As indicated above, the governing equations are the con-
fact, macroscopic hydrodynamic equations are very ofterinuity equation and the energy equation which may be writ-
used to correlate experimental data and thus account for tHen as

predictions of the renormalization groupRG) theory

A. Quasisteady profiles

[22,23. Following these trends, the main aim here is to solve LI 4 —o 29
the relevant hydrodynamic equations for the mean values of at 9 or (rpv)= 22
the macroscopic properties, but considering the critical be-

havior of the transport properties. an

Fluctuations about the mean values occur in a length scale
given by the correlation lengté. These fluctuations may be
expected to wipe out whenever the average is performed by —=
over regions much larger thah In any thermal relaxation ot ar  pcpr9 or

aT  aT 1 4 aT
- ( ’ ar) (23
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together with the fluid equation of state that relateand T
at the critical pressur®.. Defining the following dimen-
sionless quantities:

(24

wheree=p../p. and x..= k.. /pCp_, the Strouhal and Pe
clet numbers become

t istic 1
St= charactensuc: -, (25)
tresidence €
|
Pe= diffusion -1 (26)
tresidence

Using a reference system which moves
sionless interfaca(r)=R(t)/R;,, we define

x=s—a(r),

U=w-ea, (27
. da
a=4r

Equations(22) and (23) become, respectively,

o¢ —gég i +a)%u]=0, (28
| 5+ xral t G a0, @28
00+ 86’_ 1 N gAaa 29
97 TUax " (xrayigC x| TN ] (29

Assuminge<<1, a regular expansion of the solutions us-
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with the dimen-
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On the other hand, the fluid on the cold side of the reced-
ing border is at rest and at critical conditions. Therefore, in
the moving reference system, the boundary conditions at the
heated side are

1 . .
Qz;andu=—sathengu=—a atx=0. (30

To leading order a first integration of E®8) yields

(x+a)%u=—a%a=¢(7), (31

where boundary conditiof30) has been used to relate the

integration functiony(7) to the recession velocits.
Also to leading order, using as the independent variable
in Eq. (29), a first integration leads to

0 a0
(p(T)fO C(0’)d0’:(x+a)9A&, (32

where Eq.(31) and boundary conditiofll5) have been taken
into account.

Separating thex and 6 dependent terms in E¢32) and
integrating, one finds

( )J'x dx
T =
o(x+a)? Jo (¢ o
fo C(0')d6o

Therefore, depending on the geometry considdiie,
the value ofg) the temperature profile will be given by

0 A(el/)dall

=F(6). (33

planar:  6=F (¢(7)x),
X
cylindrical:  #=F Y ¢(7)In 1+, (34
o pa|e(D [ a
spherical: 6=F a rall

In the cases of planar symmetry or cylindrical symmetry
the present solution is not compatible with a constant tem-
perature solution at infinity. Hence, if the heating takes place
in contact with an unconfined constant temperature environ-
ment, this solution should be matched with an outer solution,

thus providing the vaporization rage These cases will not
be considered any further here.

On the other hand, in the case of spherical symmetry, the
receding velocity is found by imposing the far-field tempera-
ture condition,f(x—=)— 1, resulting in

o _ (1 A
a O_fMC(W)dy
0

Using Eq.(31) in Eqg. (35) and integrating with respect to
time, ad? law is obtained,

=F(1). (35)

ing e as a smallness parameter will be performed. To leading

order in this regular expansion the unsteady terms inZg).
and Eq.(29) are negligible. Therefore, the QS approximation
may be used as the leading order solution.

a?=1-KyapT, (36)

with a dimensionless vaporization constant given by
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Kyap=2F(1). (37 TABLE Il. Minimum ambient temperatures imposed by the
? long-time condition for various substances, leading t00.05.
B. Vaporization time Substance T, (K) Z. T. (K)
me?]LSjit:'_)Sr::gJStISn8ath§ri\;2.|tLi]C?n:ti(|’)nzan Eq.(36) one finds the di- 40 o hons 200-400 03 1200-2400
P Hydrogen 33.2 0.305 202.5
1 Nitrogen 126.2 0.29 732
Tvap~™ - (38)  Oxygen 154.6 0.288 890.5
vap Water 647.3 0.229 2965

Recalling Egs(31), (33), and (37), the vaporiza-
tion constant—and therefore the vaporization time—may be o . o
numerically calculated once the temperature dependence rPlies the restrictionl..>T, . If the density at infinity can
the variable properties and cp are known—analytically, P evaluated by means of the ideal gas EOS the last restric-

numerically, or experimentally—in the temperature intervallion may be written as

of interest. S

_ Re_turn_mg to dimensional quantities, the droplet vaporiza- 0, =—-"ts1 (42)

tion time is c &

Pec Rﬁ Rzn whereZ, is the critical isothermal compressibility
tvap= P Xoo Tvap~ — 7, T :
o zf K(T")dT”/ f cp(THdT’ P Rigea
Te Te Ze=——— With Rp=—n % (43
(39 RmTecpe M molar

It is worth remarking that the integral appearing in Eq. Here Rigeq gasiS the universal gas constant, aMdh, is the
(39) is convergent, in spite of the singular behavior of beth  molar mass. Experimentallg, ranges between 0.23 and
andcp nearT.. Recalling Eq.(7), close to the lower inte- 0.31 for most fluidg24], and is equal to 0.375 for a van der
gration limit the integrand will behave as Waals gas.

If the smallness parameter is fixed to the acceptable value

K T-T,\ ko1 40 of 0.05, the estimations of the minimum ambient temperature
T , , Te (40) (Tocmm) for this model to apply are shown in Table Il for
LCCP(T )dT several fluids of interest in combustion practice.
Then we see from the values in Table Il that condition
then the integral will be convergent as long as (42) may be quite restrictive in some cases. Nevertheless it is

accomplished in many practical situations, especially for
v combustion processes when the temperature at infinity cor-
=0, (4D responds to the adiabatic flame temperature of a diffusion
Bé ;

flame located far from the cold fluid package.

which is always true. In any case, for the sake of numerical _ o
convergence, the integrations are better performed in terms 2. Isobaric approximation
of the reduced volum¥=p./p instead of the temperature.  As reported by25—-31] when the heating takes place in a
In that case, the vanishing behavior @fé(3V)_ at the CP  prescribed volume the piston effe@diabatic heating con-
compensates the divergency of the specific heat and also thegquence of the thermal expansion coefficient critical diver-
of A(6)/[§C(6")d6" asH—0. gency, is responsible for the enhanced heating of the fluid.
On the other hand, if the critical behavior is not retainedOn the other hand, if the heating occurs in an unconfined
and constant properties are considered, the vaporization tinfvironment, as it happens in many practical situations, for
exhibits the logarithmic divergency predicted by the classicalimes much longer than the acoustic time the pressure varia-
theory. Ifcp is assumed to be constant andariable as was tions induced by the Stefan flow have a negligible contribu-
done by Sachez-Tarifaet al.[14] in their model applicable tion to the heating dynamics. In this situation an isobaric

in supercritical conditions, the classical divergency may benodel holds as in the case of unconfined subcritical vapor-
cured. I1zation.
Now the limits of validity of the former hypothesis are
C. Limits of validity of the long-time isobaric scheme calculated. The pressure variations induced by the Stefan
flow may be evaluated by means of the Euler equation,
1. Quasisteady approximation

The quasisteady approximation in the reference system ‘9_V+ VU"_V:_f (44)
receding with the interface defined in E45) is valid when AT ar’
St=1/e>1, which imposes the restriction=p../pj;<1.

That is always true for subcritical vaporization far from the In terms of the dimensionless variables defined in Egs.

critical point. At the critical pressure the former condition (24) and(27) together with the definitions
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P over, boundary condition Eq(31) shows thatu<|a|
1= P’ (45) =0(1). Then, the isobaric scheme will be consistent as long
as
M= X2 [P (46) O(M?)=<0(e). (52)
Rin Pc

. ] In the low density limit corresponding to the conditions at
wherell is the reduced pressure ahtlis the Mach number, jnfinjty, the kinetic theory of dilute gases provides for the
the Euler equation in the moving reference frame reads as thermal conductivity the relation

Ju 1 oIl Ko™~Cy loVpusPe, (53
R T @

ou

——l—sé

e aT

wherel., stands for the mean free path. This yields for the
The relative importance of the pressure gradient is giversquared Mach number the value
by the squared Mach number )
IOC
KZO(M ) (48) yawRin

(54

In order to compare the terms corresponding to pressure 1 hen: recalling Eq(52), the isobaric hypothesis is a good

and temperature inhomogeneities, the energy equation cofPProximation as long as
taining the pressure-variation-related terms is rewritten.

o
Making use of the thermodynamic relations R—s Je, (55
in
o= —_1((9_p) , which is always true for macroscopic droplets vaporizing in
p \dT|, nonrarified gases, especially if this long-time behavior is ex-

pected to be seen, because the characteristic ldjgtinust

Tap(dP 49 be large enough for the heating bodle vaporizing droplet
Cp=Cyt aT) (49 in most casesto last during the first unsteady short-time
P interval, not considered here, after which the QS temperature
c profile (34) is reached.
P
Ya= <
Cv V. VAPORIZATION TIME FOR A VAN DER WAALS
wherec, is the mass specific heat at constant volume, the DROPLET AT CRITICAL CONDITIONS
energy equation Is written as The qualitative behavior of the vaporization rate may be
90 30 ( o1 o1 %r:axﬁiiilly worked out in the case of the van der Waals gas,
e—+U——-Sle—+u—
J Ix J X
RnTp , 27 RET?
1 d a0 P=1"p, amr", with =51 P
=——— —| (x+a)%\ —|, mP ¢
QC(X+ a)g X IX
1 RyT.
1\[a6 bn=g b (%6
whereS=|1— — i (50
Ya e although the critical exponents predicted by this equation

(which corresponds to a mean field theprgliffer slightly
from the actual exponents provided in Table I.
For a van der Waals gas, the following relations apply:

The behavior of the coefficiers corresponding to the
pressure variations defined in EGO) can be qualitatively
evaluated by means of the van der Waals EOS.

c :Cidealgas
1 1 % v
(-2t
Ya/le 3 P+amp2
Cp=CytRnm > .
2 P—anp“(1—-2byp)
Scp=38=0C(e), (51)

In the framework of a mean field theory the behavior of
¢, is nondivergent. In order to find an explicit analytic ex-
S, ~1— i —0(1). pression for the vaporization rate an averaged specific heat at
constant volume will be considered¢, ), thus the attention
will focus on the strong convection due to the thermal ex-
Near the critical pointS becomegO(e) and increases up pansion, the vanishing of the thermal diffusivity, and the
to a value of ordefO(1) for the conditions at infinity. More-  divergency of the thermal conductivity.

a,

%0
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FIG. 2. Temperature dependence of the dimensionless thermal

conductivity A (solid line) and the dimensionless specific h&t FIG. 3. Linear-log plot of the QS spherically symmetric profiles
(dashed lingfor a van der Waals fluid. Same parameters as in FigOf the dimensionless thermal diffusivit/oC (dotted ling, the
1. coefficientA g /oC=(1/¢C)|dA/ 30| (dashed ling and the reced-

ing temperature profiled=(T—T.)/(T,.—T,.) (solid line) versus
An appropriate expression af valid for the whole tem- the instantaneous distance to the droplet interfdeefor a van der
perature range can be obtained by adding three different covVaals fluid. Same parameters as in Fig. 1.
tributions [32,22,23: the low density limit«92S the excess
thermal conductivity«®, and the critical divergency at the =0.014.., and x;=0.078... To the best of our knowl-
CP &€, edge, no measurements of the amplitugelong the critical
isobar are available in the literature. For this qualitative cal-
k=k9T)+ «E(p)+ k(T). (58  culation the amplitude along the critical isocore for {JG2]

o ) has been used. The valuesof corresponds also to GP32].
For the low density limit two models are considered heren the estimation of botlxy/«.. andx, /.. the approximate

first as assumed bji4] a linear dependence is supposed, value ofx.,,=0.2 W/mK has been assumed. Figure 2 shows

- that the critical behavior of the thermal conductivity is im-
K9 T)= k= r, —. (59)  Portant only very close to the critical temperatut@ { T, 3
T |=10"3T,), whereas the critical enhancement of the specific
heat is important even for temperatures as big asTi.25
In Fig. 3 the radial dependence of the dimensionless ther-
mal diffusivity A/oC, the dimensionless coefficient

Alternatively, the prediction of the kinetic theory for the
hard sphere gas is considered,

T AoleC=(1/0C)|dA/3®|, are shown together with the
KgaiT):KHSEK“/__ (60) spherically symmetric QS temperature profile. The three
Te quantities have been calculated from E(&3) and (35) by

means of the former model far and the van der Waals EOS
Ruith the same values of the parameters as discussed before.
As mentioned in Sec. Il at the dropléis the critical tem-
o perature is approachgdhe thermal diffusivity vanishes and
kE(p)=rK,— (61)  the divergency ofA o /0 C dominates and is responsible for

Pe the vanishing thermal flow at the interface. In this plot it is

and the critical exponent compatible with the mean fieldalso observed that the critical droplet causes a nonnegligible

posed to vary linearly with the fluid densif23]

; : thermal disturbance in the surrounding atmosphere where it
theory is consideredTable ), . .
y ar ) is set even at distances as larger aslO°R;, .
T-T/| ® (a) Gas contribution to the vaporization rat&ecalling
k(T)= ko - (62 Egs.(33) and(37) the contributions of the terme¥= " or
C

k9= 1S to the vaporization rate are found. To leading or-
This description of the thermal conductivity is used hereder ine the results are, respectively,
just for illustration purposes and will lead to three different

contributions to the vaporization constant. Anyway, for any in 2Cp,

real gas the vaporization rate provided by E8j7) may be Kvap_m1 (63
numerically evaluated taking into account the actual thermo-
dynamic behavior.

In order to visualize the qualitative dependence with the KHS:E (64)
temperature, the thermal conductivity and the specific heat V&b (cy)
considered here are plotted in Fig. 2 in the cas@sfin Fig.
1) a monatomic (c,)=3R,,) hard sphere 9= ") gas, In order to attain a final numerical value of each estima-

with T.,=9.3T. (that yields the valuee=1/25), o tion of K4, the simplest case of constant is considered.
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In these conditions, for a monatomic gas we hdeg) 20.09F
(53

: =240.19 e
=3Rm, and for a diatomic gagc,)=3R. Moreover, at  Hoogf . Toass
infinity Eq. (57) shows thatty =Rp+c, +0(e), leading T, [ -1

N N gl 0.17 8

to g g

g 006 Jo.16 %

. - 8 B : <

Klap ™= Kigp =2, 6 5T 0155

80.04F 1 3.

& s 0.14§

>0.03 1/ . =3

KHSmonaE@ KHSdial;ZZ_8 (66) B H0.13 8

vap 3 ’ vap 5 . %002 W : 0.12 g

MO.OI -; B I ”A 1 i - 1 1 ) 1 ) 1 O 11 ®

Surprisingly enough, the result obtained by means of the 10 15 20 25 30 _35 40 45 50
van der Waals EOS, considering variable properties and the . S )

mean fieldapproximate critical behavior of andcp, for the FIG. 4. Relative vaporization time decreadeft axis scalg

case of k%= xI" coincides exactly with the prediction of owed to the excess_thermal con(_ductivﬁt;ot-dashed _Iin)e_the criti-
Smchez-Tarifaet al. [14], in their model applicable in su- cal thermal con(_juctlwt)(dashed_ ling and_ the c_ombmaﬂon of_bot_h
percritical conditions where the apparently very restrictiveSfects (dotted ling together with the dimensionless vaporization
hypothesis of ideal gas EOS, constapt, and no singular time (right axis scalgas afupctlc_)n ofc,)/ R, for a van der Waals
critical behavior(as it corresponds to supercritical condi- fluid. Same parameters as in Fig. 1.
tions) were taken into account. _ _

(b) Excess contribution to the vaporization rafehe va- 7ap  Klap
porization rate enhancement owed to the excess thermal con- - T
ductivity is, to leading order iz,

. (72
iZi Kap

Tvap

The relative decreases of the vaporization time owed to
cylec—9 «©, kE and to the combined effect of both contributions are
) plotted in Fig. 4 together with the dimensionless vaporization

e Ky Cp, ( (25c— 18)( 7 — 2arctan5{/16c—9)

v e, (c,)

3(c—2)In(1+c)/4
+ c -4

time as a function of the averaged specific heat at constant
(67 . . ;
volumec, see figure caption for details. It may be seen that,
with the values ofky and «; used in this calculation, the
For a constant, monatomic or diatomic gas one finds tributions to the vaporization rate grow with the averaged
specific heat at constant volurae Thus this decrease in the
. K1 ‘ P vaporization time in critical conditions may be quite impor-
KEmonal1.49—=,  KIg'=1.80—. (68)  tant for polyatomic molecules.
Koo Kee In the case of constaut,, for a monatomic or a diatomic
gas, the relative decrease owed to the combined effeet of

(c) Critical contribution to the vaporization rateSubsti- and «E for other values ofc, and «; is given by

tuting Eq. (62 in Eq. (37), the critical contribution to the
vaporization rate to leading order inis

5Tmonat K K
022 +1.68-2,
KC Ko Ce, 4 foo(z+3)/(z+1)1’3OI 69 Thonat K K
= e——— ———eeeeeeee Z
Y ke Rm33Jo (1+c)22+52+4 (73)
diat
. . . vap K1 K0
and for a monatomic or a diatomic constagtgas m=0-32K—+2-33K—-
Cmonat_ Ko Cdiat__ Ko . L .
Kvap —11.ZOK—, Kvap —13.06K—. (70) Finally, the vaporization time for a constanj, mon-

atomic or diatomic hard sphere gas, for other valuepf

(d) Relative decrease of the vaporization tirBeparating andry, is given by

the integral that defines the vaporization rate according to the

expression ofx, K, is found to be the sum of the three ER p.R2
contributions tmonat_ g e
. . vap e +1.68o+0.22’
— as
Kvap_ Kgap+ Kvap+ Kvap' (7 1) (74)
5
The dimensionless vaporization time may be calculated ngpcRﬁ1
by means of Eq(38) and the relative decrease of the vapor- pdiat_ .
ization time owed to a contributiolt, is given by VP Kkt 2.330+0.32
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VI. CONCLUSIONS subcritical conditions foP<P.. The reason for this mini-

mum, but nonvanishing, vaporization time at critical pressure

__The conv.e.ct|ve-.d|ffu5|ve h_eatlng of a fluid papkage atis twofold. On one hand, the latent heat term is absent and,
critical conditions, immersed in a much hotter environment,

has been considered. Due to the diveraing behavior of tha" the other hand, there is an extra contribution to the vapor-
o ging ... Ization rate owed to the critical behavior of the thermal con-
thermal conductivity the heat flux must vanish at a deﬂmteductivity

locus R(t) where the critical conditions are reached. This The hypothesis of small density ratic=p../p, imposes

Lﬁzl:: i:iﬁgrﬁfts ggﬁkglrsélr}gzlzzzbgen :ﬁglcc):tﬁérosindeo?ﬁerzdit%e condition of a very high temperature at infinity; this con-
9 9 ition may be quite restrictive in some cases but it is fulfilled

the fluid package at the initial critical conditions. The locus. ; L ;
in many practical situations, especially for droplet combus-

R(t) appears to be th? natural exte.n3|on of the SchrItlca{ion at critical conditions when the vaporizing droplet is sur-
interface when the critical pressure is approached from be-

g : : : rounded by a far diffusion flame.
low. Thus the positioR(t) is defined as the interface for the The restrictions imposed by the hypothesis of isobaric be-

Th_e way to account for a nondiverging vaporization ratevariations induced by the Stefan flow will be of order

at critical conditions, when the latent heat term is absent ang)((I /R.)?), with |, being the mean free path at infinity
. . . . H © in 3 ©

there is no density difference across the interiges, is to ndR;, the initial droplet radius. Then we conclude that, in

take into account the C”F"?a' divgrgency of the specific hea pe long-time limit, the isobaric hypothesis will be a good
and the thermal conductivity, which causes a vanishing heaapproximation for macroscopic droplets vaporizing in un-
flow at the mterface. : L . confined nonrarified media, even if the droplet is at critical
When the ratio between the gas density and liquid dens't¥:onditions

E sr?all,< f arggtwsrsrixaﬁﬁ 2‘2‘2neXOfa;Zieoneql;?ggqnestelrjsgg b The model shows that th# law remains valid for droplet
~PelPc ; P P . \‘?aporization at critical conditions. The droplet vaporization
perfor_m(_aq. Then,. the evolution of the system in the Iong'time is given by Eq(39) and it may be evaluated once the
time limit is quaystegdy yvhen seen from a rgference fram‘ﬁuid specific heat and the thermal conductivity are known as
attached to the receding interface. The receding temperatutes - o0 of the temperature in the range of interest
profiles found in the cases of planar and cylindrical symme- The qualitative behavior of the vaporization rate and the

try are not compatible with a constant temperature splution a\$aporization time are analytically calculated for a van der
infinity. In these cases the receding velocity of the mten‘acewaaIS EOS, an averaged specific heat at constant volume

should be found as a consequence of the matching betwefi@v), and a thermal conductivity compatible with the mean

the present solution and the far-field solution. In the sphen-Eield theory in the critical region and with the kinetic theory

cal symmetry case, which is the case of interest in droplem the low density region. In this analysis it is found that the

vaporiz_ation, the _boundary condition of C(_)nstant temperatur?elative vaporization time decrease owed exclusively to the
at infinity determines the receding velocity of the 'merface’thermal conductivity divergency is close to 7.5%, being

and ad? law With a finite vaporization rate is_ fOl_md. More- more important for polyatomic molecules.
over, the vaporization rate and the vaporization time are
given by a quadrature that can be numerically evaluated once

the specific heat at constant pressegeand the thermal con- ACKNOWLEDGMENTS

ductivity « are known in the temperature interval of interest.
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