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Droplet vaporization at critical conditions: Long-time convective-diffusive profiles
along the critical isobar
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The heating of a cold fluid package introduced, at critical conditions, in a hotter environment of the same
fluid at the critical pressure is analyzed. Critical anomalies of the fluid transport properties as well as an
arbitrary equation of state are taken into account. In unconfined microgravity conditions and for times much
longer than the characteristic acoustic time, the heat transfer becomes a convective-diffusive isobaric transient
process. An asymptotic theory valid in the limit of very small ratio between the fluid densities in the hot and
cold regions is developed. The divergency of the thermal conductivityk at the critical temperature controls the
heat transfer to the cold region. In the present model it is shown that there exists a well defined border, denoted
by R(t), delimiting two distinguishable regions. The outer region extends from the far field down toR(t)
where the critical temperatureTc is reached. There, the temperature gradient vanishes due to the divergency of
k. Thus, heat does not penetrate in the inner cold region where the temperature remains equal toTc . The
heating of the initially cold fluid package takes place by the recession of the borderR(t). The model predicts
a temperature profile in the outer region which is quasisteady in a reference system receding withR(t). It is
shown thatR2(t) decreases linearly with time. The recession velocity and thus the vaporization time are
obtained as a function of the geometry and of the far-field conditions. Furthermore, the restrictions imposed by
the long-time isobaric hypothesis are analyzed.@S1063-651X~99!01009-0#

PACS number~s!: 44.10.1i, 44.25.1f, 64.60.Ht
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I. INTRODUCTION

The heating of an initially cold package of fluid at th
critical point ~CP! suddenly introduced in a much larger an
hotter environment of the same fluid at critical pressure
analyzed. Buoyancy effects are not considered. Class
theories for droplet vaporization under subcritical conditio
predict that the square of the droplet diameter decreases
early with time ~the so-calledd2 law!. The proportionality
constant provides the vaporization rate which depends on
fluid thermodynamic properties and diverges when the la
heat of vaporization vanishes. Therefore, a vanishing va
ization time is predicted for critical fluid conditions. Thu
these classical theories do not properly account for the ac
behavior at and near the fluid critical pressure. The hea
of the critical fluid package is analyzed in this paper with
full account of the critical behavior of the thermodynam
fluid properties at the critical point. In this work, the usu
quasisteady~QS! approach~in a moving reference system!
for the temperature distribution in the hot fluid region
used. The model leads again to ad2 law but now with a
nondiverging vaporization rate.

Let us consider the unsteady convection-diffusion h
transfer problem of two adjacent portions of the same fluid
different initial temperatures, such that the cold fluid porti
is at the vapor-liquid CP. An enhanced heating occurs du
the piston effect if the heat transfer takes place at cons
volume, as a consequence of the critical divergency of
thermal expansion coefficient. However, we will restrict ou
selves to the case of an unconfined environment when
characteristic heating time is much longer than the acou
time, as happens in many practical situations. Here, the p
PRE 601063-651X/99/60~3!/2930~12!/$15.00
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sure will remain almost constant and equal to the initial cr
cal pressurePc . Under these conditions, the temperatu
may attain a quasistationary profile that recedes with a gi
velocity. This velocity has to be obtained as part of the
lution. In the present paper, the long-time isobaric evolut
of the initial temperature discontinuity is outlined for variou
geometries, and fully solved for the spherical symmetry c
which is the case of interest in droplet vaporization. It
shown that, due to the critical divergency of the therm
conductivityk, the slope of the quasisteady temperature p
file, attained for long times, must vanish at the locus wh
the critical temperatureTc is reached. This behavior of th
temperature profile matches continuously with the theor
cally predicted isobaric QS profiles found in the subcritic
case, when the pressure is raised up to the critical value
the vaporization latent heat vanishes.

The following temperature discontinuity is considered
initial condition:

T5Tc for r ,Rin and T5T` for r .Rin , ~1!

wherer is the relevant spatial coordinate andR stands for the
location of the border separating the cold fluid at the
from the heated fluid. The subscriptc stands for critical con-
ditions, the subscript̀ refers to the initial conditions in the
hot region, and subscript ‘‘in’’ denotes initial values.

The pressure is considered to remain equal to the crit
pressureP5Pc . Then, the velocity field and temperatu
distribution are governed by the continuity equation and
energy equation. The moment conservation equation ca
used to determine the validity limits of the isobaric hypot
esis.
2930 © 1999 The American Physical Society
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PRE 60 2931DROPLET VAPORIZATION AT CRITICAL . . .
This paper is organized as follows. A brief review
present droplet vaporization theories in subcritical as wel
supercritical fluid conditions is outlined in Sec. II. As th
classical analyses fail down near the fluid critical conditio
a new model is presented in this paper. For critical con
tions, the position whereT reaches the critical valueTc from
the hotter side defines a characteristic locus which plays
role of the gas-liquid interface in subcritical conditions. T
properties of this locus are presented in Sec. III. The qu
steady temperature profiles are solved in Sec. IV where
d2 law and the critical vaporization rate are obtained. Also
Sec. IV the restrictions imposed by the model are discus
Section V applies the results to a van der Waals fluid
critical conditions. The discussion of results is provided
Sec. VI.

II. DROPLET VAPORIZATION THEORIES

The problem of droplet vaporization/combustion in u
confined media is usually treated as isobaric~i.e., the veloc-
ity induced by the Stefan flow assumed to be much sma
than the sound speed!, spherically symmetrical~neglecting
buoyancy effects!, and diffusion controlled. See@1–5# for a
review.

In subcritical conditions the classical theory predicts t
there exists an initial transient period for the whole drople
reach the vaporization wet-bulb temperature. The amoun
fluid vaporized during this transient phase is often negligib
Afterwards the vaporization proceeds in a QS manner s
that the squared diameter of the droplet decreases line
with time (d2 law!. Then, the vaporization rate defined as

Kvap8 [2
dR2

dt
5

Rin
2

tvap
~2!

is constant.tvap is the characteristic droplet vaporization tim
andR is the instantaneous droplet radius.

Depending on the initial droplet temperature, the transi
heating period in the liquid phase may last for an apprecia
fraction of the droplet lifetime. The transient period in th
gas phase close to the droplet~induced by the initial tem-
perature discontinuity! has been found to be negligible. Th
validity of this QS theory is explained as a consequence
the very small density ratio between the gas density and
liquid density

«[
r`

r in
!1 ~3!

that causes in the gas an intense Stefan flow and a very
characteristic Strouhal number. The unsteady correction
the QS theory are, as explained by@6#, due to the influence
of the unsteady far-field region, at distances of orderRin /A«,
where convection is negligible as compared to diffusio
These unsteady corrections of the QS model are of o
O(«1/2).

In these subcritical conditions when variable propert
are taken into account, thed2 law and the vaporization con
stant predicted by the classical theory are in good agreem
with experiment@2#, resulting in
s
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Kvap8 } lnS 11
^cP&~T`2Tin!

L D , ~4!

where^cP& is an averaged value of the specific heat at c
stant pressure~and this average behaves regularly at the cr
cal point! and L is the specific latent heat of vaporizatio
~which vanishes when the critical temperature is a
proached!.

Therefore, Eq.~4! shows that the classical theory predic
a divergency of the vaporization rate, as the pressure
proaches the fluid critical pressure whereL vanishes. Thus, a
fluid at critical pressure seems to vaporize instantaneo
due to the vanishing ofL. That would mean that as soon as
pocket of cold fluid is introduced in a much hotter enviro
ment filled with the same fluid at the critical pressure, the
is no distinction between the two initial regions and a co
tinuous phase represents the evolution of the heat tran
problem. However, experiments@7–11# have shown that
even for ambient pressures equal to the fluid critical press
or larger, there still exists a characteristic time of heat c
duction. During this time a well defined cold region remai
distinguishable from the heated fluid side. This behavior c
not be obtained from the classical theory. The present pa
tries to solve the discrepancy between the classical the
and the experimental findings.

Spalding @12#, in order to compute droplet combustio
times, considered that under critical or supercritical con
tions the droplet could be considered as an instantane
point source~PS! of gas ~PS theory!. In this PS theory the
density is taken as constant in the gas phase and, co
quently, convective transport is neglected, but unsteady c
duction of heat is taken into account. Rosner@13# general-
ized the former PS theory to account for the finite size of
supercritical pocket of gas. Like the PS theory, the distr
uted source theory neglected the convective heat transfe
the gas surrounding the droplet. Sa´nchez-Tarifaet al. @14#
analyzed the vaporization time of a supercritical droplet in
gas phase considered as an ideal gas with variable the
conductivity and constant specific heat. In their analysis
space was divided into three distinct regions, the outer
region, the inner receding transition region, and the c
droplet. Each region was solved separately and the reces
rate of the transition region was obtained by the match
between the temperature profiles in the different regio
They also found ad2 law for the vaporization dynamics ap
plicable when the heating takes place at supercritical p
sures. The present work is based on the analysis by Sa´nchez-
Tarifa et al. @14#, but includes the critical behavior of th
fluid transport coefficients at the critical temperature. In o
analysis, the transition region indicated by Sa´nchez-Tarifaet
al. becomes engulfed by the outer region and only two d
tinguishable fluid regions should be accounted for.

The problem of droplet vaporization in contact with
multicomponent gas has been studied by several auth
Rosner and Chang@15# considered the vaporization an
combustion problem of a monocomponent droplet in n
critical conditions in contact with a multicomponent gas.
their model the properties in both phases, including the
density, were substituted by appropriate averaged values
the actual behavior of the latent heat was taken into acco
They obtained the stationary wet-bulb temperature for
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2932 PRE 60ARIAS-ZUGASTI, GARCÍA-YBARRA, AND CASTILLO
liquid phase in contact with a multicomponent gas as a re
of the balance between the heat transferred to the drople
conduction and that needed for the vaporization to t
place. As the pressure is raised the stationary wet-bulb t
perature tends to the critical value along the coexiste
curve, reaching it when the pressure is about three times
critical pressure of the fuel. For pressures larger than ne
three times the fuel critical pressure, a subcritical station
temperature for the dense phase is never achieved.
model concludes that in these cases the vaporization wil
completely unsteady. For smaller pressures the droplet
attain a subcritical stationary wet-bulb temperature even w
pressures greater than the critical pressure. Haldenw
et al. @16# considered the problem of a liquid oxygen drop
vaporizing in contact with a hydrogen atmosphere. The th
modynamic model considered in the numerical analysis
based on a mixture equation of state obtained by mean
the classical mixing rules applied to the Redlich-Kwon
Soave cubic equation of state~EOS! of the pure component
The classical mixing rules were also considered in orde
approximate the specific heat of the mixture. The transp
properties considered were based in empirical correlat
supplemented with mixing rules in the case of the therm
conductivity. In the thermodynamic model of the mixture t
singular critical behavior of the pure component thermo
namic properties was not taken into account. The study
cused on the transition from subcritical to supercritical v
porization regime depending on ambient pressure
temperature. The results of the analysis showed that,
consequence of mixture properties, subcritical vaporiza
regimes can be obtained even for chamber pressures m
larger than the oxygen critical pressure. For larger cham
pressures the transient supercritical vaporization regim
encountered. The minimum droplet vaporization time w
found to correspond to the pressure and temperature co
tions where the transition between both regimes occurre

III. THE FLUID AT CRITICAL CONDITIONS

When the vaporization takes place under subcritical c
ditions, there is a well defined physical interface separa
the cooler and denser~liquid! phase from the hotter an
lighter ~gas! phase. However, the concepts of latent heat
surface tension lose their meaning beyond the critical p
sure where both vanish. Thus, for pressures larger tha
equal to the fluid critical pressure such an interface canno
properly defined. However, in the present section it is sho
that at the critical pressure, the locus where the critical te
perature is reached~and where several fluid transport coef
cients diverge! plays a role quite similar to the interface
subcritical conditions.

A. The divergencies at critical pressure

The shape of the critical isotherm, the behavior of t
order parameter~the fluid densityr), and the correlation
length j, near the CP, are given by the well known critic
laws @17,18#

P2Pc}S r2rc

rc
D d

atT5Tc ,
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r2rc}S T2Tc

Tc
D b

along the coexistence line,

~5!

j}UT2Tc

Tc
U2n

at r5rc ,

whereb, d, andn are critical exponents.
Moreover, the Einstein-Kawasaki formula@19# provides

the behavior of the thermal diffusivityx near the CP,

x5
k

rcP
.

kBTc

6pmj
, ~6!

wherek is the thermal conductivity,cP is the mass specific
heat at constant pressure,kB is the Boltzmann constant, an
m is the ~nondiverging! fluid viscosity.

Making use of the exponent renormalization rule for t
power laws along different paths@20#, when one approache
the critical temperature along the critical isobar, the ord
parameter, the mass specific heat at constant pressure
the thermal conductivity behave as

r2rc.2r0S T2Tc

Tc
D 1/d

at P5Pc ,

cP.c0UT2Tc

Tc
U2g/bd

at P5Pc , ~7!

k.rcx0c0UT2Tc

Tc
U2(g2n)/bd

at P5Pc ,

where subscript 0 denotes the dimensional power law am
tudes along the critical isobar.

The values of the critical exponents@20# and all the criti-
cal exponent combinations of interest here are given in Ta
I, where the first column corresponds to themean field theory
and the second column to the most accuraterenormalization
group value.

TABLE I. Critical exponents and critical exponent combin
tions.

Critical exponent Mean field theory Renormalization grou

a 0 0.11060.003
b 1/2 0.32660.002
g 1 1.23960.002
d 3 4.8060.02
n 1/2 0.63060.001
h 0 0.03160.004
1/d 1/3 0.20860.001
g

bd
2/3 0.79260.009

n

bd
1/3 0.40360.012

g2n

bd
1/3 0.38960.004

12
n

bd
2/3 0.59760.012
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Then, as shown in Fig. 1, the specific heat at cons
pressurecP and the thermal conductivityk diverge when the
critical temperature is approached along the critical isob
The divergence ofcP is stronger than the divergence ofk.

B. Behavior of the temperature gradient

The unidimensional energy equation at constant pres
reduces to

]T

]t
1v

]T

]r
5

x

r g

]

]r S r g
]T

]r D1
1

rcP

]k

]T S ]T

]r D 2

, ~8!

wherer is the relevant spatial coordinate,v is the fluid ve-
locity component alongr, andg is a number which depend
on the geometry:

planar symmetry: g50,

cylindrical symmetry: g51, ~9!

spherical symmetry: g52.

From Eq.~7!, near the CP the dominant part of the d
rivative of the thermal conductivity is given by

]k

]T
.2sgn~T2Tc!rc

x0c0

Tc

g2n

bd UT2Tc

Tc
U2(g2n)/bd21

.

~10!

Therefore, for the coefficient of the last term on the rig
hand side of Eq.~8!, we find

1

rcP

]k

]T
.2sgn~T2Tc!

x0

Tc

g2n

bd UT2Tc

Tc
U2(12n/bd)

,

~11!

which corresponds to a quite strong divergent behavior.
the other hand, from Eq.~6! the thermal diffusivity vanishes
as j21. A comparison between these two coefficients
shown in Fig. 1, see also Fig. 3 discussed later. Then, n

FIG. 1. Log-linear plot ofL[k/k` ~solid line!, C[cP /cP`

~dotted line!, L/%C[x/x` ~dashed line!, andLQ[u]L/]Qu ~dot-
dashed line! versus the reduced temperatureQ[T/Tc for a van der
Waals fluid in the critical region withP5Pc , T`59.3Tc , cv

5
3
2 Rm , and k given by Eqs. ~58! and ~60!–~62! with k0

50.014k` and k150.078k` . See Sec. V for a discussion of th
values of these parameters.
nt

r.

re

-

-

n

s
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the CP the second term on the right-hand side of Eq.~8!
dominates and the energy equation can be approximated

]T

]t
1v

]T

]r
52sgn~T2Tc!

x0

Tc

g2n

bd UT2Tc

Tc
U2(12n/bd)S ]T

]r D 2

.

~12!

Therefore, in order to achieve a balance between conv
tion and diffusion in Eqs.~8!, ~12!, as the temperature ap
proaches the critical value in the hot gaslike side, the spa
derivative of the temperature must vanish according to
power law

]T

]r
}UT2Tc

Tc
U12n/bd

~13!

and consequently the heat flux must vanish following
power law

k
]T

]r
}UT2Tc

Tc
U1/d

, ~14!

where use has been made of Eq.~7! together with Eq.~13!
and Rushbrooke’s and Griffith’s scaling laws@18# ~see be-
low!.

Then, as a consequence of the powerlike divergency
the thermal conductivity with the temperature, when the
porization takes place along the critical isobar, the heat
fuses only down to a definite locusR(t) defined as the place
where

T5Tc andk
]T

]r
50 at R~ t !. ~15!

On this locus the temperature reaches the critical va
and the thermal flow vanishes. Moreover, on the other s
of this locus the temperature remains at the initial critic
temperature. The heating of the cold fluid takes place asR(t)
recedes. The receding velocity, obtained as part of the s
tion, determines the vaporization time. The vanishing of
heat flux at a moving location is a well known behavior for
thermal diffusivity with a powerlike~although not necessar
ily diverging! temperature dependence~see, for instance
@21#!.

Once this is stated, we define this locusR(t) as the inter-
face between the heated and nonheated regions. This ch
appears to be the natural extension of the real thermo
namic interface in subcritical conditions as the critical pre
sure is attained. Consider that the experiment of isobaric
porization is repeatedly performed with pressur
increasingly higher. As the critical pressure is reached,
heat flux at the interface, on the gas phase side (k]T/]r )R1

,
which is proportional to the latent heat times the vaporizat
rate, will decrease tending to zero, owed to the vanishing
the latent heat at the CP. Then, the conditions stated by
~15! are achieved in the limit of vaporization at the critic
pressure.

C. Extrapolation of the model to other dimensionalities

The vanishing heat flux atR(t) is reached for any value
of the critical exponents whenever two basic conditions
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accomplished. First, a divergent behavior of the thermal c
ductivity with a critical exponent (g2n)/bd.0 is needed.
Second, a divergent behavior of (1/rcP)(]k/]T) with a
critical exponent 12n/bd.0 is required. These two cond
tions may be summarized as

n,g and n,db. ~16!

The exponent values and the space dimensionality~here
denoted byD) are related by the scaling laws@18#

2b1g522a ~Rushbrooke’s law!,

2bd2g522a ~Griffith’s law!,

g5n~22h! ~Fisher’s law!,

nD522a ~Josephson’s law!.

The first condition in Eq.~16! is accomplished as long a
h,1, which is largely fulfilled, whereas the second con
tion is always fulfilled forD.2, and for the exponent value
in Table I it will hold for D.1.208. Therefore, the condi
tions indicated by Eq.~16! are accomplished in any real ex
periment of vaporization at the CP for all the symmetr
indicated in Eq.~9! whereD53.

D. The use of a mean field theory

In the previous description of the fluid, a mean fie
theory has been assumed, neglecting the fluctuations in
perature and density. As we know, these fluctuations bec
very intense near the critical point. Therefore, one may w
der about the validity of this mean field hypothesis. T
mean field theory is accurate only away from the CP, wh
the correlation length is a microscopic scale and the fluc
tions of the order parameter are negligible. As the criti
point is approached thermally induced fluctuations of the
der parameter develop in many different scales rising to
macroscopic scale. Then, the dynamics becomes gove
by the interactions between these clusters regardless of
size and leading to the behavior predicted by the renorm
ization group theory. The mean field theory neglects the
set and interaction of these critical fluctuations and is t
unable to accurately predict the critical exponents of st
~thermodynamic potentials! and dynamic~transport coeffi-
cients! properties. Nevertheless, transport phenomena
the CP are usually studied by solving hydrodynamic eq
tions ~as the equations considered here! supplemented with
the actual behavior of the transport properties involved.
fact, macroscopic hydrodynamic equations are very of
used to correlate experimental data and thus account fo
predictions of the renormalization group~RG! theory
@22,23#. Following these trends, the main aim here is to so
the relevant hydrodynamic equations for the mean value
the macroscopic properties, but considering the critical
havior of the transport properties.

Fluctuations about the mean values occur in a length s
given by the correlation lengthj. These fluctuations may b
expected to wipe out whenever the average is perform
over regions much larger thanj. In any thermal relaxation
-

-

s

m-
e
-
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-
s
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-
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e
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process a characteristic heat conduction length arises, g
by

LHC[
T

]T/]r
, ~17!

and the process can be assumed to be governed by a m
scopic model whenever

j!LHC. ~18!

In the relaxation process considered here the former c
dition is expected to be accomplished far from the CP. Mo
over, as the critical point is approached along the criti
isobarLHC diverges proportionally to

LHC}UT2Tc

Tc
U211n/bd

~19!

recalling the exponent renormalization rule for the pow
laws along different paths@20# we find

j

LHC
}UT2Tc

Tc
U [d(D22)22]/dD

at P5Pc , ~20!

where use has been made of Rushbrooke’s law, Griffit
law, and Josephson’s law. Then near the CP the former c
dition stated by Eq.~18! is translated here to

d.
2

D22
. ~21!

From Table I it may be concluded that this condition
fulfilled for D53 and it can never be fulfilled forD521 .
Taking into account the exponent values in Table I the c
dition j!LHC will hold for D.2.67 ~for d53) and forD
.2.42~for d54.80). This provides a self-consistency test
the present scheme forD53 but by no means claims tha
fluctuations are unimportant. What happens is that the imp
tance of fluctuations is restricted to a neighborhood of
critical point. And even though this length diverges the sc
of the region where the temperature is close to the crit
temperature shows a stronger divergency and mean va
can properly be used.

IV. GOVERNING EQUATIONS

A. Quasisteady profiles

As indicated above, the governing equations are the c
tinuity equation and the energy equation which may be w
ten as

]r

]t
1

1

r g

]

]r
~r grv !50 ~22!

and

]T

]t
1v

]T

]r
5

1

rcPr g

]

]r S r gk
]T

]r D ~23!
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together with the fluid equation of state that relatesr andT
at the critical pressurePc . Defining the following dimen-
sionless quantities:

s[
r

Rin
,

t[«
x`

Rin
2

t,

v[v
Rin

x`
,

u[
T2Tc

T`2Tc
, ~24!

%[
r

r`
,

C[
cP

cP`

,

L[
k

k`
,

where«5r` /rc and x`5k` /r`cP`
, the Strouhal and Pe´-

clet numbers become

St[
tcharacteristic

t residence
5

1

«
, ~25!

Pe[
tdiffusion

t residence
51. ~26!

Using a reference system which moves with the dim
sionless interfacea(t)[R(t)/Rin , we define

x[s2a~t!,

u[v2«ȧ, ~27!

ȧ[
da

dt
.

Equations~22! and ~23! become, respectively,

«S ]%

]t
1

gȧ%

x1a
D 1

1

~x1a!g

]

]x
@~x1a!g%u#50, ~28!

«
]u

]t
1u

]u

]x
5

1

~x1a!g%C

]

]x S ~x1a!gL
]u

]xD . ~29!

Assuming«!1, a regular expansion of the solutions u
ing « as a smallness parameter will be performed. To lead
order in this regular expansion the unsteady terms in Eq.~28!
and Eq.~29! are negligible. Therefore, the QS approximati
may be used as the leading order solution.
-

-
g

On the other hand, the fluid on the cold side of the rec
ing border is at rest and at critical conditions. Therefore,
the moving reference system, the boundary conditions at
heated side are

%5
1

«
andu52«ȧ then%u52ȧ atx50. ~30!

To leading order a first integration of Eq.~28! yields

~x1a!g%u52agȧ[w~t!, ~31!

where boundary condition~30! has been used to relate th
integration functionw(t) to the recession velocityȧ.

Also to leading order, usingu as the independent variabl
in Eq. ~29!, a first integration leads to

w~t!E
0

u

C~u8!du85~x1a!gL
]u

]x
, ~32!

where Eq.~31! and boundary condition~15! have been taken
into account.

Separating thex and u dependent terms in Eq.~32! and
integrating, one finds

w~t!E
0

x dx

~x1a!g
5E

0

u L~u9!du9

E
0

u9
C~u8!du8

[F~u!. ~33!

Therefore, depending on the geometry considered~i.e.,
the value ofg) the temperature profile will be given by

planar: u5F21
„w~t!x…,

cylindrical: u5F21Fw~t!lnS 11
x

aD G , ~34!

spherical: u5F21Fw~t!

a S 12
a

x1aD G .
In the cases of planar symmetry or cylindrical symme

the present solution is not compatible with a constant te
perature solution at infinity. Hence, if the heating takes pla
in contact with an unconfined constant temperature envir
ment, this solution should be matched with an outer soluti
thus providing the vaporization rateȧ. These cases will no
be considered any further here.

On the other hand, in the case of spherical symmetry,
receding velocity is found by imposing the far-field tempe
ture condition,u(x→`)→1, resulting in

w~t!

a
5E

0

1 L~u9!du9

E
0

u9
C~u8!du8

5F~1!. ~35!

Using Eq.~31! in Eq. ~35! and integrating with respect to
time, ad2 law is obtained,

a2512Kvapt, ~36!

with a dimensionless vaporization constant given by
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Kvap52F~1!. ~37!

B. Vaporization time

Substituting the valuea50 in Eq. ~36! one finds the di-
mensionless vaporization time

tvap5
1

Kvap
. ~38!

Recalling Eqs.~31!, ~33!, and ~37!, the vaporiza-
tion constant—and therefore the vaporization time—may
numerically calculated once the temperature dependenc
the variable propertiesk and cP are known—analytically,
numerically, or experimentally—in the temperature interv
of interest.

Returning to dimensional quantities, the droplet vapori
tion time is

tvap5
rc

r`

Rin
2

x`
tvap5

rcRin
2

2E
Tc

T`
k~T9!dT9Y E

Tc

T9
cP~T8!dT8

.

~39!

It is worth remarking that the integral appearing in E
~39! is convergent, in spite of the singular behavior of bothk
and cP nearTc . Recalling Eq.~7!, close to the lower inte-
gration limit the integrand will behave as

k

E
Tc

T

cP~T8!dT8

;S T2Tc

Tc
D n/bd21

~40!

then the integral will be convergent as long as

n

bd
.0, ~41!

which is always true. In any case, for the sake of numer
convergence, the integrations are better performed in te
of the reduced volumeV5rc /r instead of the temperature
In that case, the vanishing behavior of (]u/]V)

P
at the CP

compensates the divergency of the specific heat and also
of L(u)/*0

uC(u8)du8 asu→0.
On the other hand, if the critical behavior is not retain

and constant properties are considered, the vaporization
exhibits the logarithmic divergency predicted by the class
theory. IfcP is assumed to be constant andk variable as was
done by Sa´nchez-Tarifaet al. @14# in their model applicable
in supercritical conditions, the classical divergency may
cured.

C. Limits of validity of the long-time isobaric scheme

1. Quasisteady approximation

The quasisteady approximation in the reference sys
receding with the interface defined in Eq.~15! is valid when
St51/«@1, which imposes the restriction«[r` /r in!1.
That is always true for subcritical vaporization far from t
critical point. At the critical pressure the former conditio
e
of

l

-

.

l
s

hat

e
l

e

m

implies the restrictionT`@Tc . If the density at infinity can
be evaluated by means of the ideal gas EOS the last res
tion may be written as

Q`[
T`

Tc
5

Zc

«
@1, ~42!

whereZc is the critical isothermal compressibility

Zc5
Pc

RmTcrc
with Rm5

Rideal gas

Mmolar
. ~43!

HereRideal gasis the universal gas constant, andMmolar is the
molar mass. ExperimentallyZc ranges between 0.23 an
0.31 for most fluids@24#, and is equal to 0.375 for a van de
Waals gas.

If the smallness parameter is fixed to the acceptable va
of 0.05, the estimations of the minimum ambient temperat
(T`min

) for this model to apply are shown in Table II fo
several fluids of interest in combustion practice.

Then we see from the values in Table II that conditi
~42! may be quite restrictive in some cases. Nevertheless
accomplished in many practical situations, especially
combustion processes when the temperature at infinity
responds to the adiabatic flame temperature of a diffus
flame located far from the cold fluid package.

2. Isobaric approximation

As reported by@25–31# when the heating takes place in
prescribed volume the piston effect~adiabatic heating!, con-
sequence of the thermal expansion coefficient critical div
gency, is responsible for the enhanced heating of the fl
On the other hand, if the heating occurs in an unconfin
environment, as it happens in many practical situations,
times much longer than the acoustic time the pressure va
tions induced by the Stefan flow have a negligible contrib
tion to the heating dynamics. In this situation an isoba
model holds as in the case of unconfined subcritical vap
ization.

Now the limits of validity of the former hypothesis ar
calculated. The pressure variations induced by the Ste
flow may be evaluated by means of the Euler equation,

r
]v
]t

1rv
]v
]r

52
]P

]r
. ~44!

In terms of the dimensionless variables defined in E
~24! and ~27! together with the definitions

TABLE II. Minimum ambient temperatures imposed by th
long-time condition for various substances, leading to«50.05.

Substance Tc (K) Zc T`min
(K)

Hydrocarbons 200–400 0.3 1200–2400
Hydrogen 33.2 0.305 202.5
Nitrogen 126.2 0.29 732
Oxygen 154.6 0.288 890.5
Water 647.3 0.229 2965
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P[
P

Pc
, ~45!

M[
x`

Rin
Ar`

Pc
, ~46!

whereP is the reduced pressure andM is the Mach number,
the Euler equation in the moving reference frame reads

«%S ]u

]t
1«äD1%u

]u

]x
52

1

M2

]P

]x
. ~47!

The relative importance of the pressure gradient is gi
by the squared Mach number

]P

]x
5O~M2!. ~48!

In order to compare the terms corresponding to press
and temperature inhomogeneities, the energy equation
taining the pressure-variation-related terms is rewritt
Making use of the thermodynamic relations

aP[
21

r S ]r

]TD
P

,

cP5cv1
TaP

r S ]P

]T D
r

, ~49!

ga[
cP

cv
,

wherecv is the mass specific heat at constant volume,
energy equation is written as

«
]u

]t
1u

]u

]x
2SS «

]P

]t
1u

]P

]x D
5

1

%C~x1a!g

]

]x S ~x1a!gL
]u

]xD ,

whereS[S 12
1

ga
D S ]u

]P D
%

. ~50!

The behavior of the coefficientS corresponding to the
pressure variations defined in Eq.~50! can be qualitatively
evaluated by means of the van der Waals EOS.

S5S 12
1

ga
D S 1

%
2

«

3D ,

SCP.
2

3
«5O~«!, ~51!

S`.12
1

ga`

5O~1!.

Near the critical point,S becomesO(«) and increases up
to a value of orderO(1) for the conditions at infinity. More-
n

re
n-
.

e

over, boundary condition Eq.~31! shows that u<uȧu
5O(1). Then, the isobaric scheme will be consistent as lo
as

O~M2!<O~«!. ~52!

In the low density limit corresponding to the conditions
infinity, the kinetic theory of dilute gases provides for th
thermal conductivity the relation

k`;cv`
l `Ar`Pc, ~53!

where l ` stands for the mean free path. This yields for t
squared Mach number the value

M2;
l `
2

ga`

2 Rin
2

. ~54!

Then, recalling Eq.~52!, the isobaric hypothesis is a goo
approximation as long as

l `

Rin
&A«, ~55!

which is always true for macroscopic droplets vaporizing
nonrarified gases, especially if this long-time behavior is
pected to be seen, because the characteristic lengthRin must
be large enough for the heating body~the vaporizing droplet
in most cases! to last during the first unsteady short-tim
interval, not considered here, after which the QS tempera
profile ~34! is reached.

V. VAPORIZATION TIME FOR A VAN DER WAALS
DROPLET AT CRITICAL CONDITIONS

The qualitative behavior of the vaporization rate may
analytically worked out in the case of the van der Waals g
for which

P5
RmTr

12bmr
2amr2, with am5

27

64

R m
2 Tc

2

Pc
,

bm5
1

8

RmTc

Pc
~56!

although the critical exponents predicted by this equat
~which corresponds to a mean field theory!, differ slightly
from the actual exponents provided in Table I.

For a van der Waals gas, the following relations apply

cv5cv
ideal gas

~57!

cP5cv1Rm

P1amr2

P2amr2~122bmr!
.

In the framework of a mean field theory the behavior
cv is nondivergent. In order to find an explicit analytic e
pression for the vaporization rate an averaged specific he
constant volume will be considered ,^cv&, thus the attention
will focus on the strong convection due to the thermal e
pansion, the vanishing of the thermal diffusivity, and t
divergency of the thermal conductivity.
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An appropriate expression ofk valid for the whole tem-
perature range can be obtained by adding three different
tributions @32,22,23#: the low density limitkgas, the excess
thermal conductivitykE, and the critical divergency at th
CP kC,

k5kgas~T!1kE~r!1kC~T!. ~58!

For the low density limit two models are considered he
first as assumed by@14# a linear dependence is supposed,

kgas~T!5k lin[k`

T

T`
. ~59!

Alternatively, the prediction of the kinetic theory for th
hard sphere gas is considered,

kgas~T!5kHS[k`A T

T`
. ~60!

On the other hand, the excess thermal conductivity is s
posed to vary linearly with the fluid density@23#

kE~r!5k1

r

rc
~61!

and the critical exponent compatible with the mean fi
theory is considered~Table I!,

kC~T!5k0UT2Tc

Tc
U21/3

. ~62!

This description of the thermal conductivity is used he
just for illustration purposes and will lead to three differe
contributions to the vaporization constant. Anyway, for a
real gas the vaporization rate provided by Eq.~37! may be
numerically evaluated taking into account the actual therm
dynamic behavior.

In order to visualize the qualitative dependence with
temperature, the thermal conductivity and the specific h
considered here are plotted in Fig. 2 in the case of~as in Fig.
1! a monatomic (̂cv&5 3

2 Rm) hard sphere (kgas5kHS) gas,
with T`59.3Tc ~that yields the value«51/25), k0

FIG. 2. Temperature dependence of the dimensionless the
conductivity L ~solid line! and the dimensionless specific heatC
~dashed line! for a van der Waals fluid. Same parameters as in F
1.
n-

,

p-

t

-

e
at

50.014k` , and k150.078k` . To the best of our knowl-
edge, no measurements of the amplitudek0 along the critical
isobar are available in the literature. For this qualitative c
culation the amplitude along the critical isocore for CO2 @32#
has been used. The value ofk1 corresponds also to CO2 @32#.
In the estimation of bothk0 /k` andk1 /k` the approximate
value ofk`50.2 W/mK has been assumed. Figure 2 sho
that the critical behavior of the thermal conductivity is im
portant only very close to the critical temperature (uT2Tc
u.1023Tc), whereas the critical enhancement of the spec
heat is important even for temperatures as big as 1.25Tc .

In Fig. 3 the radial dependence of the dimensionless th
mal diffusivity L/%C, the dimensionless coefficien
LQ /%C[(1 /%C)u]L/]Qu, are shown together with the
spherically symmetric QS temperature profile. The th
quantities have been calculated from Eqs.~33! and ~35! by
means of the former model fork and the van der Waals EO
with the same values of the parameters as discussed be
As mentioned in Sec. II at the droplet~as the critical tem-
perature is approached!, the thermal diffusivity vanishes an
the divergency ofLQ /%C dominates and is responsible fo
the vanishing thermal flow at the interface. In this plot it
also observed that the critical droplet causes a nonneglig
thermal disturbance in the surrounding atmosphere whe
is set even at distances as large asr .102Rin .

(a) Gas contribution to the vaporization rate.Recalling
Eqs.~33! and~37! the contributions of the termskgas5k lin or
kgas5kHS to the vaporization rate are found. To leading o
der in « the results are, respectively,

Kvap
lin 5

2cP`

Rm1^cv&
, ~63!

Kvap
HS5

4cP`

^cv&
. ~64!

In order to attain a final numerical value of each estim
tion of Kvap, the simplest case of constantcv is considered.

al

.

FIG. 3. Linear-log plot of the QS spherically symmetric profil
of the dimensionless thermal diffusivityL/%C ~dotted line!, the
coefficientLQ /%C[(1/%C)u]L/]Qu ~dashed line!, and the reced-
ing temperature profileu[(T2Tc)/(T`2Tc) ~solid line! versus
the instantaneous distance to the droplet interfacex/a for a van der
Waals fluid. Same parameters as in Fig. 1.
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In these conditions, for a monatomic gas we have^cv&
5 3

2 Rm , and for a diatomic gaŝcv&5 5
2 Rm . Moreover, at

infinity Eq. ~57! shows thatcP`
5Rm1cv`

1O(«), leading
to

Kvap
linmonat5Kvap

lindiat52, ~65!

Kvap
HSmonat5

20

3
, Kvap

HSdiat5
28

5
. ~66!

Surprisingly enough, the result obtained by means of
van der Waals EOS, considering variable properties and
mean fieldapproximate critical behavior ofk andcP , for the
case ofkgas5k lin coincides exactly with the prediction o
Sánchez-Tarifaet al. @14#, in their model applicable in su
percritical conditions where the apparently very restrict
hypothesis of ideal gas EOS, constantcP , and no singular
critical behavior ~as it corresponds to supercritical cond
tions! were taken into account.

(b) Excess contribution to the vaporization rate. The va-
porization rate enhancement owed to the excess thermal
ductivity is, to leading order in«,

Kvap
E 5

k1

k`

cP`

^cv&
S ~25c218!~p22arctan5/A16c29!

cA16c29

1
3~c22!ln~11c!/4

c
24D , ~67!

where lower casec is defined asc[^cv&/Rm .
For a constantcv monatomic or diatomic gas one finds

Kvap
Emonat51.49

k1

k`
, Kvap

Ediat51.80
k1

k`
. ~68!

(c) Critical contribution to the vaporization rate. Substi-
tuting Eq. ~62! in Eq. ~37!, the critical contribution to the
vaporization rate to leading order in« is

Kvap
C 5

k0

k`

cP`

Rm

4

A3 3
E

0

` ~z13!/~z11!1/3

~11c!z215z14
dz ~69!

and for a monatomic or a diatomic constantcv gas

Kvap
Cmonat511.20

k0

k`
, Kvap

Cdiat513.06
k0

k`
. ~70!

(d) Relative decrease of the vaporization time.Separating
the integral that defines the vaporization rate according to
expression ofk, Kvap is found to be the sum of the thre
contributions

Kvap5Kvap
gas1Kvap

E 1Kvap
C . ~71!

The dimensionless vaporization time may be calcula
by means of Eq.~38! and the relative decrease of the vapo
ization time owed to a contributionKvap

j is given by
e
he

n-

e

d
-

dtvap
j

tvap
5

Kvap
j

(
iÞ j

Kvap
i

. ~72!

The relative decreases of the vaporization time owed
kC, kE and to the combined effect of both contributions a
plotted in Fig. 4 together with the dimensionless vaporizat
time as a function of the averaged specific heat at cons
volumec, see figure caption for details. It may be seen th
with the values ofk0 and k1 used in this calculation, the
influence ofkC is always bigger than that ofkE. Both con-
tributions to the vaporization rate grow with the averag
specific heat at constant volumec . Thus this decrease in th
vaporization time in critical conditions may be quite impo
tant for polyatomic molecules.

In the case of constantcv , for a monatomic or a diatomic
gas, the relative decrease owed to the combined effect okC

andkE for other values ofk0 andk1 is given by

dtvap
monat

tvap
monat

50.22
k1

k`
11.68

k0

k`
,

~73!

dtvap
diat

tvap
diat

50.32
k1

k`
12.33

k0

k`
.

Finally, the vaporization time for a constantcv , mon-
atomic or diatomic hard sphere gas, for other values ofk0
andk1, is given by

tvap
monat5

3

8
RmrcRin

2

k`11.68k010.22k1
,

~74!

tvap
diat5

5

8
RmrcRin

2

k`12.33k010.32k1
.

FIG. 4. Relative vaporization time decrease~left axis scale!
owed to the excess thermal conductivity~dot-dashed line!, the criti-
cal thermal conductivity~dashed line!, and the combination of both
effects ~dotted line! together with the dimensionless vaporizatio
time ~right axis scale! as a function of̂ cv&/Rm for a van der Waals
fluid. Same parameters as in Fig. 1.
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VI. CONCLUSIONS

The convective-diffusive heating of a fluid package
critical conditions, immersed in a much hotter environme
has been considered. Due to the diverging behavior of
thermal conductivity the heat flux must vanish at a defin
locus R(t) where the critical conditions are reached. Th
locus separates two distinguishable regions. On one
there is the hot gaslike region and on the other side ther
the fluid package at the initial critical conditions. The loc
R(t) appears to be the natural extension of the subcrit
interface when the critical pressure is approached from
low. Thus the positionR(t) is defined as the interface for th
Stefan problem at critical conditions. The heating of the c
fluid package takes place as the interface recedes with t

The way to account for a nondiverging vaporization ra
at critical conditions, when the latent heat term is absent
there is no density difference across the interfaceR(t), is to
take into account the critical divergency of the specific h
and the thermal conductivity, which causes a vanishing h
flow at the interface.

When the ratio between the gas density and liquid den
is small, a regular expansion of the equations using«
[r` /rc!1 as the smallness expansion parameter can
performed. Then, the evolution of the system in the lon
time limit is quasisteady when seen from a reference fra
attached to the receding interface. The receding tempera
profiles found in the cases of planar and cylindrical symm
try are not compatible with a constant temperature solutio
infinity. In these cases the receding velocity of the interfa
should be found as a consequence of the matching betw
the present solution and the far-field solution. In the sph
cal symmetry case, which is the case of interest in dro
vaporization, the boundary condition of constant tempera
at infinity determines the receding velocity of the interfac
and ad2 law with a finite vaporization rate is found. More
over, the vaporization rate and the vaporization time
given by a quadrature that can be numerically evaluated o
the specific heat at constant pressurecP and the thermal con
ductivity k are known in the temperature interval of intere

Thus, the present model of droplet vaporization perm
us to establish a quasisteady scheme, in the moving refer
frame, applicable along the critical isobar that, according
the experimental evidence, predicts a minimum, nonvan
ing, vaporization time when the pressure is the critical pr
sure of the droplet, as compared to the vaporization time
-

t
t,
e

e

de
is

al
e-

d
e.

d

t
at

ty

be
-
e
re
-
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e
en
i-
et
re
,

e
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.
s
ce

o
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-

in

subcritical conditions forP,Pc . The reason for this mini-
mum, but nonvanishing, vaporization time at critical press
is twofold. On one hand, the latent heat term is absent a
on the other hand, there is an extra contribution to the vap
ization rate owed to the critical behavior of the thermal co
ductivity.

The hypothesis of small density ratio«[r` /rc imposes
the condition of a very high temperature at infinity; this co
dition may be quite restrictive in some cases but it is fulfill
in many practical situations, especially for droplet combu
tion at critical conditions when the vaporizing droplet is su
rounded by a far diffusion flame.

The restrictions imposed by the hypothesis of isobaric
havior are analyzed by means of the Euler equation. In
long-time limit considered here it is found that the press
variations induced by the Stefan flow will be of ord
O„( l ` /Rin)

2
…, with l ` being the mean free path at infinit

andRin the initial droplet radius. Then we conclude that,
the long-time limit, the isobaric hypothesis will be a goo
approximation for macroscopic droplets vaporizing in u
confined nonrarified media, even if the droplet is at critic
conditions.

The model shows that thed2 law remains valid for droplet
vaporization at critical conditions. The droplet vaporizati
time is given by Eq.~39! and it may be evaluated once th
fluid specific heat and the thermal conductivity are known
a function of the temperature in the range of interest.

The qualitative behavior of the vaporization rate and
vaporization time are analytically calculated for a van d
Waals EOS, an averaged specific heat at constant vol
^cv&, and a thermal conductivity compatible with the me
field theory in the critical region and with the kinetic theo
in the low density region. In this analysis it is found that t
relative vaporization time decrease owed exclusively to
thermal conductivity divergency is close to 7.5%, bei
more important for polyatomic molecules.
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